Short Introduction to the ANNIS Query Language

Potsdam, July 3rd 2007; Draft version.

1 What you can search for

The ANNIS Query Language (AQL) enables you to search for the following information:

- Documents
- Text
- Annotations

2 Document Search

- To search for a document, you can use the *document name*.
- Underspecified queries can be formulated by combining the *wildcards* * and ? with the *document name*.

Pattern:

doc=DocumentName

Examples:

doc=urml.maz-10374.anno

doc=urml*

3 Text Search

There are two ways to search for the occurrences of some text:

- Using a text string enclosed by double quotation marks
- Using Regular Expressions enclosed by two slashes

Pattern:

"*TextString*" (it's possible to use *wildcards* (* ?) as placeholders within the *text string*) /*RegExp*/

Examples:

"Jugendliche"

"Musikcaf?"

/Fußball.+/

4 Annotation Search

To search for annotations, you can use the following information:

- (name of the) Annotation Tag set (ATS)
- Annotation Attribute
- Annotation Value
- Text

The query expression puts this elements in a fixed order.

But it's possible to replace some of the elements by *wildcards* to underspecify your query. (At least one of the elements has to be a *non-wildcard* term!)

Pattern:

ATS::Attribute=Value="Text"

partial expressions (unique):		
ATS::Attribute=Value		
ATS::Attribute="Text"		
Attribute=Value="Text"		
Attribute=Value		
ATS::"Text"		

full expression: ATS::Attribute=Value=* ATS::Attribute=*="Text" *::Attribute=Value="Text" *::Attribute=Value=* ATS::*=*="Text"

Examples:

pcc11-coref::grammatical_role=SBJ pcc11-tiger::cat="*Schröder*" pos=NN="K*" Foc_contr=cf-conf pcc11-rst::"kein*"

5 Complex search terms

Elementary search terms of each type (*Document, Text, Annotation*) can be combined to form complex query expressions by the following *operators*:

- & (means AND THERE IS)
- | (means OR)
- (means *exclusive OR*)

The *precedence* (of order of interpretation) corresponds to the order of presentation(decreasingly). You can use *brackets* to force another order of interpretation or to increase the readability.

Pattern:

Term1 & Term2 Term1 | Term2 Term1 ^ Term2 (Term1) (Term2) * same as: Term1 & Term2

Examples:

inf-stat=new | inf-stat=acc*

6 Extended Match Conditions

In particular with the Annotation Search, there are some extended relational match conditions.

To query for a special relation between two terms a and b, you first have to list all the terms (of the expression):

a & *b* & *c* (first part)

The *second part* specifies the desired relation, identifying the related terms by there position: #1 REL-OP #2 (second part)

To obtain the complete expression, part *one* and *two* have to be connected via the operator '&': *a* & *b* & *c* & #1 REL-OP #2

Pattern:

term1 & term2 & #1 REL-OP #2

List of operators:

Symbol	Description	Example
a > b	a directly dominates b	s & np & #1 > #2
a > * b	a dominates b	s & pos=ADJA & #1 >* #2
a \$ b	<i>a</i> is a sister node of <i>b</i>	pos=art & pos=ADJA & #1 \$ #2
a.b	a directly precedes b	art & adja & #1 . #2
a .* b	a precedes b	art & adja & #1 .* #2
a _=_ b	a covers the same sequence as b	np & n & #1 _=_ #2
a @ b	a and b are types/values of the same ATS	n & np & #1 @ #2
a:root	is the root node tree	s & #1:root
a:arity=n	a has n daughter nodes	s & #1:arity=3

Christian Lemke, Michael Götze; July 3rd 2007